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An intrinsic property of  potential energy surfaces (PES) that holds within the 
adiabatic approximation is established: its structural stability. 

We derive the condition that ensures this property: There cannot be any 
integral curve of the gradient field of  the PES that connects two classical 
transition state configurations without passing through another critical con- 
figuration in between. 

Under  this situation, we can establish a one-to-one correspondence: a whole 
class of  adiabatic PES defining one reaction mechanism is associated to a 
directed graph. Thus, the problem of finding a-priori pathways involving a 
given number  m of chemical species narrows down to a classifying certain 
directed graphs with m sinks. The combinatorial method is derived in this 
paper.  

Detailed examples on a-priori pathways for degenerate thermal rearrange- 
ments and on 1-2 hydrocarbon shifts are worked out and found in agreement 
with experimental evidence. 

Key words: Intrinsic reaction coordinate-- transversal i ty condition on the 
separa t r ices--graph representation of a planar  dynamical system 

I. Introductory remarks and definitions 

We shall be concerned with adiabatic potential energy surfaces (APES) U = U(x), 
x belongs to the Nuclear  Configuration Space, where U(x) is the standard 
adiabatic potential under  the Born-Oppenheimer  approximation ([1]). 
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Although the nuclear configuration space is infinite, it is clear that at the free 
atom dissociation limit: x---7 oo, the potential U increases monotonically tending 
asymptotically to the zero limit. 

Therefore it is always possible to consider a disc x-< R for sufficiently large R, 
so that at the boundary of the disc the gradient force field y = -g radx  U points 
inwards. 

Henceforth y(x) will be named the standard adiabatic vector field and abbreviated 
SAVF. 

The SAVF preserves the disc. That is, if  we follow the integral curves of  y(x) 
tangent at every point x to the vector y(x), we find that we never leave the disc 
if we start in any point belonging to it. 

Within the adiabatic approximation,  the SAVF y should remain "qualitatively 
the same" under C 1 (first ditterentiable)-perturbations. 

By "qualitatively the same "we mean that by calling q the perturbed vector field, 
there exists a homeomorphism (bijective and bicontinuous map) T: ~---7 ~ ( 9  
is a compact  region preserved under y) mapping the trajectories of  y onto those 
of q. 

In other words: A SAVF y is structurally stable in the sense of  Adronov and 
Pontriagin ([2], for applications of this result in chemical dynamics the reader is 
referred to our paper  [3]). 

Therefore, it becomes natural to find and classify the APES up to the homeo- 
morphisms T's. 

For arbitrary y and q so that T exists, we shall write y - q. 

As we shall demonstrate in Sect. 3, finding the classes modulo - for a given 
number  of  minima in the APES is exactly equivalent to finding the a-priori 
mechanisms in processes involving chemical species in correspondence with these 
minima. 

Thus, the classification of potential energy surfaces and their gradient vector 
fields up to T's vis-a-vis the critical points as done in the present paper,  provides 
an alternative and more detailed approach to the purely combinatoric or graph 
theoretic classification and enumeration of  all possible mechanisms of given 
overall reaction. 

This was done previously by one of us (O. Sinanoglu [4], [5], [6].) 

Some definitions are required to show that the classes modulo - are in one-to-one 
correspondence with the a-priori mechanisms. 

A saddle point o" of index n of the SAVF y is a critical configuration (a zero of 
y) such that the dimension of the manifold of  outgoing trajectories is n. This 
manifold is tangent at ~ to the plane of unstable vibrational modes of that nuclear 
arrangement. The classical transition states are saddles of  index 1. 
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Further research is being done by these authors to elucidate the nature of  
elementary reactions involving a transition species with more than one promoting 
mode. 

The integral curves joining saddles with sinks of  y are the intrinsic reaction 
coordinate curves (IRC) (the concept was developed by Fukui [7] and Fukui and 
Tachibana;  see for example [8], [9]). 

The integral curves joining sources to saddles are the separatrices (see [10] for 
terminology). 

The basin of attraction (or simply basin) of any critical configuration is the 
manifold of  trajectories tangent to the stable vibrational modes of that species 
at that configuration. (The whole manifold is defined by a local property). 

The IRC's  and separatrices are tangent to the unstable and stable planes of 
vibrational modes of the transition state config, respectively. 

Now we can state that the one-to-one correspondence exists since the only two 
features of  an APES required to determine its class modulo - are: (c.f. Sect. 3) 
a) The set of  IRC's.  
b) The set of  separatrices. This set determines the boundaries of  all the basins 
of  the chemical species (the sinks of  y). In Sect. 3 we shall prove that two SAVF's 
y and q are equivalent if and only if they present: 
a') The same set of  IRC's  up to homeomorphisms T's. That is, the set of  IRC's  
of  y can be continuously deformed onto that of  q. 
b') The same pattern of  separatrices up to homeomorphisms T's. 

Once we know the topology of  these two sets, we can build a directed graph 
which will be called the IRC's-and-separatr ices (IRCS) graph: 

Each vertex of the graph corresponds to a critical configuration and each edge 
corresponds to an IRC or a separatrix. 

09  is regarded as a source of the SAVF and shows up as a vertex in the graph. 

The IRCS graph plays a central role in classifying the a-priori SAVF classes within 
a given number  of  chemical species. A necessary condition for two SAVF to 

belong to the same class is that they present the same IRCS graph. 

In Sect. 3 we shall prove that the problem of finding the classes modulo - is 
equivalent to the combinatorial  problem of finding the isomorphism classes of  
IRCS graphs so that these isomorphisms preserve certain distinguished subgraphs. 

As an introductory illustration consider an isomerization A B C ~ B C A  with a 
single transition state (an example of this process is the H 1-2 shift in the species 
[CH2CH3] +) ([11]). 

Since there is no stable intermediate in between the two basins of  the two 
tautomeric forms, the SAVF up to homeomorphisms T's is displayed in Fig. 1 
as well as the associated IRCS graph. 
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The two regions of  ~ limited by the separatrix are the basins of the tautomers 
ABC and BCA. Let us consider the IRCS graph: 

The upper edges correspond to the separatrices, that is, the integral curves tangent 
to the direction of the stable vibrational mode of  the transition state at this precise 
nuclear configuration: 

The lower edges correspond to the IRC-curves tangent at the transition state to 
the promoting vibrational mode. 

Any I-2 shift via a single transition state lies in the same class modulo - .  

In the rest of the paper we shall find the necessary and sufficient conditions that 
ensure the structural stability of an APES (Sect. 2), solve the classification problem 
(Sect. 3) and provide further and detailed chemical examples (Sect. 4). 

2. Structural stability of adiabatic potential energy surfaces 

The conditions that ensure the structural stability (as defined in Sect. 1) of an 
adiabatic PES require a previous description of the stable and unstable manifolds 
of trajectories passing through a transition state configuration tr. 

The stable manifold of o- is, roughly speaking, the manifold of trajectories having 
tr as a sink. 

It is rigorously defined as the set of points p's in ~ for which the integral curve 
through p which solves the system of differential equations: 

dxi- dxz i > j (1) 
oU aU 

ax~ axj 
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tends to o- as we follow the field of  directions y(x) (which associates a direction 
given by y(x) to each point x in 9) .  

This stable manifold is denoted M'(o-).  This is the manifold of  integral curves 
tangent at o- to the plane of stable vibrational modes of o-. In the case of  the 
example depicted in Fig. 1, MS(o ") consists of  the separatrix joining the source 
BC + A  = 09  to the triangular configuration o-. 

MU(o-) denotes the unstable manifold which is the collection of trajectories that 
have o- as a source (they tend to o- as we follow the field of  directions -y(x)) .  
MU(o -) is tangent at ~r to the plane of unstable vibrational modes of o-. 

In the case of  the 1-2 shift described in Fig. 1, MU(o ") is the IRC curve joining 
the two minima (sinks of  y(x)). 

If, as in Mezey's catchment regions (see for example [12]), a chemical species is 
defined as the minimum jointly with its associated basin, the definition of transi- 
tion state should be also extended: the generalized transition state is defined as 
o- jointly with MS(o -) (its "basin").  This region defines the boundaries of  the 
basins of  two minima. 

These two definitions can be contrasted with the older notion of "significant 
structures ([13]) which corresponds to a piece of  the stable manifold: the bot tom 
of the basin. This is not a mathematically well defined notion. 

In general, for a configuration space of dimension higher than 2, there could 
exist nonclassical transition states such that dimen �9 MU(o -) > 1. Again the general- 
ized transition state is defined MS(o'). Further problems arising when treating 
nonclassical transition states will be studied in a separate paper. 

The set of  separatrices determining the distribution of the different species is 
now defined as LJ~ MS(o -) where the union extends through all the transition 
states o-. This set is then the union of all the generalized transition states. 

The pattern of  IRC's  defining the coupling of pathways for all the elementary 
steps is rigorously defined as ~_J= MU(o-). 

Now we can state those conditions that a SAVF should obey to ensure its structural 
stability. 

Since the SAVF are gradient fields, no integral curve is a closed orbit, therefore 
the conditions are: 
1) The Hessian matrix (02U/Oxi Oxfl has no eigenvalue with zero real part at any 
critical configuration in 9.  
2) Consider any two transition states o-~, o-2. Then the manifolds MS(o-0 and 
MU(or2) are transversal ([10], [14]) and so are MU(o-l) and MS(o-2). This condition 
means that either they are disjoint or for every p belonging to MS(oq) c~ M"(o-2) 
the tangent spaces of  MS(O-l) and M"(o-2) at p span the whole R" (n = dimension 
of the nuclear configuration space): 

tpMS(o-O + tpMU(o-2) = R ~ (2) 
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an analogous statement is valid for MU(tr~) and MS(002). For all p in MU(000 and 
in M~(o-2), 

tpMU(o',) + tpMS(002) = R ' .  (3) 

For a chemical interpretation of these results let us consider a 2-dimensional 
cross-section of the APES involving the directions of  the promoting (unstable) 
mode at 00~ and a stable normal mode of 00v Then our transversality condition 
can be stated in the following 

Theorem I: Consider a two dimensional cross section of the APES: U = U(x~, x2). 
Let 001 and 0~ be two transition state configurations, then there is no separatrix 
joining 0 5 and 0~2 without passing through a source. This result can also be stated 
as follows: 

The promoting mode at one transition state cannot be deformed along the meta 
IRC tangent to it to become the stable mode of another transition state. 

Proof" I f  such a connection exists, then, for any p in the separatrix, we get one 
of the following relations: 

tpMS(001) + tvM~(002) = R (4) 

tpM"(o-,) + tpM~(oh) = R. (5) 

(Since this meta-IRC belongs simultaneously to M~(tTI) and MU(o-2).) 

Therefore the tangent vectors at p coincide and the transversality condition does 
not hold. Q.E.D. 

As an example to exhibit the restrictions imposed on an APES by the structural 
stability condition consider the APES for the degenerate Cope rearrangement 
([15], [16]). 

1 
C �9 

a b c d 

The basic problem consists in deriving the topology of the boundaries of  the two 
minima in the APES (the two sinks of  the SAVF) a and b. That is describing 

Uo- M~(o')- 
The structural stability restriction on APES implies that the biradicals c and d which 
are directly connected to the concerted transition state I (see [15]) cannot be also 
transition states (otherwise we would have a saddle-saddle  connection o f  the SAVF) 
but they should be maxima in this cross section. 

Moving along the separatrix, starting from the saddle 1 towards the dissociated 
atoms limit, the biradical configurations cannot be the last critical structures to 
be found since the SAVF points inwards as we move towards the limit x--->oo. 
Therefore, there exists at least one saddle point after each biradical configuration. 

Up to homeomorphisms T's,  the SAVF is displayed in Fig. 2. 
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3. The topological classification of adiabatic potential energy surfaces using 
directed graphs 

As previously shown, the IRCS graph is built for two dimensional cross sections 
of the APES. It contains all the topological information on the set of IRC's: 
[_J~ MU(tr) and on the set of separatrices (or the union of generalized transition 
states) [J~ MS(o-). 

Certain subgraphs of the IRCS graph need to be considered. 

These are obtained by simultaneously removing a pair of vertices in the IRCS 
graph; one corresponding to a chemical species (a sink) and the other to a source 
and removing also all the pathways joining these two vertices. 

These subgraphs are displayed in Fig. 3. 

The distinguished subgraph of the IRCS graph considered in the Sect. 1 is of 
the type II. 

The existence of a distinguished subgraph of the type I implies that at least two 
elementary steps are coupled since the sink representing the chemical species 
presents two incoming edges corresponding to two different transition states. 

0C f . 4 ~ x  �9 
"'x I ,~ i ..... sepa ra t r [ ces  

ij - - I R C ' s  

w w s c h e m i c a l  s t ruc tu res  

w w 

Fig. 3 
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The generalized transition state in subgraph II (that is, the two separatrices-edges 
joining the source to the saddle) determines two regions in @, one contains the 
source with associated vertex in the subgraph II. 

In a subgraph of the type III we have two IRC-edges joining a saddle to a sink; 
this indicates that there exist two loci for the same reaction. 

The collection of the IRCS graph of a SAVF y(x) denoted G(y) and its distin- 
guished subgraphs is called the IRCS* graph and it is denoted G*(y). If there 
exists an isomorphism G(y~)~ G(y2) preserving distinguished subgraphs, we will 
write G*(yO ~ G*(y2). 

The following theorem shows that the problem of finding the a-priori mechanisms 
for a given number of chemical species is reduced to the combinatorial problem 
of finding the IRCS* graphs with that given number of sinks and saddles. 

Theorem II: If  two standard adiabatic vector fields yl(x), yz(X) have isomorphic 
IRCS* graphs: G*(y~)~ G*(y2), then these vector fields are equivalent modulo 
- ,  therefore they determine the same mechanism. 

Proof." Peixoto ([17]) has considered the following graph together with the distin- 
guished subgraphs associated with any structurally stable vector field y(x): At 
each saddle vertex we draw two incoming edges to o- from vertices a for which 
there exists a trajectory of  y(x) leaving a and entering o- and we draw two 
outgoing edges from o- to vertices o) for which there is a trajectory leaving o- and 
entering w. These graphs have the property that if two such graphs are isomorphic 
and the isomorphism preserves all the distinguished subgraphs, then the respective 
vector fields are equivalent modulo - .  If y(x) is the SAVF of an APES, the 
trajectories determining the edges in the Peixoto's graphs have an extreme chemical 
significance since they are respectively the separatrices of the basins of attraction 
of the chemical structures and the IRC curves. Therefore we get the following 
implication: 

G*(y,) ~ G*(y2) ~ y, ~ Yz. 

Now we can develop the combinatorial method for determining the IRCS* graphs 
with given overall reaction and given number of sinks. 

The restrictions that a directed graph with m sinks should fulfill to be an IRCS 
graph representing a mechanism with m (stable) chemical species are the 
following: 

I') The vertices in the graph corresponding to transition state configurations have 
exactly two incoming and two outgoing edges. 

II') No edges occur between sinks and sources except if there is only one sink, 
only one source and no saddles. 

III') The numbers of the different kinds of vertices are subject to the following 
Morse relation ([17], [18]): 

m - s + M = 2  (6) 
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s = number  of  saddle critical points of  the SAVF y(x). M = number  of  sources, 
including 0@. 

To prove the formula (6) for IRCS graphs consider the vector field y(x) restricted 
to the region 9.  

Since y(x) points inwards along the boundary  09, we can regard y(x) as a vector 
field defined on the n-sphere (we recall the reader that n is the dimension of the 
nuclear config, space). 

The boundary  0 9  becomes a source in the n-sphere ([17], [18]). 

The Po inca re -Hopf  formula for vector fields defined on a smooth compact  
manifold relates the alternative sum of the different numbers of  critical points 
to the Euler characteristic X of the manifold. 

The critical points of  y(x) are, as we have seen in one-to-one correspondence 
with the vertices of  the IRCS graph, therefore 

m - s = M = X = 2 - 2g. (7) 

Relation (7) is only valid for orientable manifolds with genus g ([17], [18]). 

For the n-sphere we have g = 0, therefore the relation (6) is proven. 

These graphs could also be treated as "networks"  of  two kinds of  undirected 
lines and three kinds of  vertices by the methods of Sinanoglu ([6]) who developed 
the 1- and 2-topology of networks of two kinds of  lines and three kinds of  vertices. 

4. Example 

A 

B" "C 

A A 
\ / 

B C ~ B C 

e f 

The 1-2 shifts in carbonium ions for which a general scheme is provided above, 
follow two general pathways 
a) The triangular intermediate g is a transition state of  index one (that is a 
classical transition state) and the MS(g) is the separatrix of  the basins of the two 
sinks e and f 

This case is illustrated in the H shift of  the species CH3CH ~- and it was briefly 
discussed in Sect. 1 (see [11]). 
b) The triangular intermediate is a minimum of  the APES. This case can be 
illustrated in the C H  3 shift in the species CH3CH2CH~- ([19]). 

We shall calculate the a-priori mechanisms in this situation restricting ourselves 
to two and three classical transition states (c.f. [19]), that is, s = 2 or 3. 
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If  s = 2, then M = 1 from the index formulas (6) and (7). 

There is only one possible IRCS graph which is displayed in Fig. 4. It is the only 
directed graph fulfilling I'), II') and III') with three sinks and two saddles. 

The two generalized transition states MS(oh) and MS(it2) separate the basins of 
e from that of g and that of g from that o f f  respectively. They are represented 
by the upper four edges in the graph. The only maximum is ~ = BC +A. 

In the case of three transition states, from the index formulae (6) and (7) we have 
two maxima. 

The a-priori mechanisms are again represented by the IRCS graphs with three 
sinks and three saddles. The four of them are displayed in Fig. 5. 

The topology of the APES where both reaction pathways a) and b) are present 
for the reaction is given by the only IRCS graph with three sinks and three 
saddles but with overall reaction 

- f  

g 

This IRCS graph is displayed in Fig. 6. It cannot present distinguished subgraphs 
of the type II' since each sink should be connected to two different saddles. 

Fig. 5 
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The pattern of the separatrices is therefore the same as in the IRCS graph in Fig. 
5 number 1. 

This graph corresponds mechanistically to the overlap of two pathways with 
corresponding IRCS graphs given in Figs. 1 and 4. 

Within the STO-3G level of approximation , there is only one saddle point detected 
in the C H  3 migration in the species C3H ~ ([19]). The single saddle actually 
resolves in a set of two saddles and one sink in between. These three critical 
configurations being very close to each other. The triangular intermediate forms 
an "Eyring lake" shallow minima in the APES. The virtual process of resolution 
of the saddle is reflected in the change in the associated IRCS graphs as displayed 
in Fig. 7. 

Fig. 7 
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